#### Poster 586 Factors Leading to >2 Antiseizure Medication Trials Prior to Epilepsy Surgery Referral in Children CookChildren's

Pediatric Epilepsy

Newell G1: Papadelis C1.2: Shandley S2: Wong-Kisiel L3: McNamara N4: Fedak Romanowski E4: Reddy S5: Patel S5: Ciliberto M6: Nangia S7: Grinspan Z7: Depositario-Cabacar D8: Singh R9: Marashly A10: Shrey D11; Karia S12; Ostendorf A13; Tatachar P14; Sannagowdara K15; Lew S15; Chapman K16; Alexander A16; Wolf S17; McGoldrick P17; Bolton J18; Coryell J19; Perelman M19; Gedela S20 & Perry MS2

School of Medicine

1 TCU & UNTHSC School of Medicine, Fort Worth, TX; <sup>2</sup>Justin Neurosciences Center, Cook Children's Medical Center, Fort Worth, TX; <sup>3</sup>Mayo Clinic, Rochester, MN; <sup>4</sup>University of Michigan, Ann Arbor, MI; <sup>5</sup>Vanderbilt University, Nashville, TN; <sup>6</sup>University of Iowa, Iowa City, IA; <sup>7</sup>Weill Cornell Medicine, New York, here the second of the second se NY; \*Children's National, Frederick, MD; \*Atrium Health Levine Children's Hospital, Concord, NC; 10 Seattle Children's, Seattle, WA; 11 CHOC Children's, Orange, CA; 12 University of Louisville, Louisville, Louisville, KY; 13 Nationaul, Erederick, MD; \*Atrium Health Levine Children's Hospital, Concord, NC; \*10 Children's National, Frederick, MD; \*10 Children's National, Frederick, MD; \*10 Children's Hospital, Concord, NC; \*10 Children's Hospital, Concord, NC; \*10 Children's National, Frederick, MD; \*10 Children's Hospital, Concord, NC; \*10 Children's National, Frederick, MD; \*10 Children's Hospital, Concord, NC; \*10 Children's Hospital, Concord, NC; \*10 Children's National, Frederick, MD; \*10 Children's National, Fred 15 Medical College of Wisconsin, Milwaukee, WI; 16 Children's Hospital Colorado, Aurora, CO; 17 Boston Children's Health Physicians, Hawthorne, NY; 18 Boston Children's Hospital, Boston, MA; 19 OHSU Doernbecher Children's Hospital, OR; 20 Children's Healthcare of Atlanta, Atlanta, GA

### BACKGROUND

- Drug resistant epilepsy (DRE) is defined as failure of two appropriately selected and dosed anti-seizure medications (ASMs) to control seizures.
- Epilepsy surgery is often the most promising alternative for children with focal DRE in order to become seizure free.
- Continued ASM trials may delay surgical treatment. Such a delay has been associated with adverse cognitive, developmental, and seizure outcomes, particularly in very young children.
- Identifying DRE-patient characteristics that lead to > 2ASM failures prior to surgical evaluation may help identify opportunities to shorten the duration to surgical evaluation.

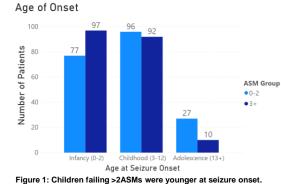
### **METHODS**

- This prospective cross sectional study utilized the Pediatric Epilepsy Research Consortium Epilepsy Surgery Database, which collects patient data from 19 US pediatric epilepsy centers to identify children ≤18 years old undergoing initial epilepsy surgery evaluation.
- Children without data on number of failed ASMs prior to referral were excluded from further analysis.
- Demographics, epilepsy characteristics, pre-surgical evaluation, surgical therapy and outcome variables were compared between patients failing  $\leq 2$  and >2ASMs at the time of evaluation.
- Time to referral was defined as duration from age at DRE diagnosis to age at referral for presurgical evaluation.
- We compared seizure outcome after surgery (Favorable: Engel 1 or 2; Unfavorable: Engel 3 or 4) between those failing  $\leq 2$  and >2 ASMs prior to referral for characteristics of significance.
- Statistical analysis performed with SPSS (IBM, NY).

## RESULTS

- 399 patients met inclusion/exclusion criteria ( $200 \le 2$  ASMs and 199 > 2 ASMs)
- **Children failing >2 ASMs were younger at seizure onset** (Fig 1; median 3y vs 5.1y; p<0.001) and had longer duration to surgical referral (Fig 2; median 1.4y vs 0.3y; p<0.001)
- Children failing >2 ASMs were more likely to have an abnormal neurological exam (p<0.001)</li>
- Children failing <2 ASMs were more likely to have surgery performed (p = 0.02)</li>
- Children failing >2 ASMs were less often offered surgical treatment (p=0.02) and more frequently underwent large resections (Fig 3; p=0.001) or palliative procedures (p=0.001)
- 138 (35%) children had surgery and at least one post-op outcome recorded (median 6m, 0-10m)
- 48% of palliative procedures had favorable surgical outcomes (Engel 1 or 2)
- Abnormal neurological exam, etiology, and number of failed ASMs did not impact surgical outcome
- No significant differences between the two groups were present for gender, ethnicity, race, insurance type, or distance to surgical center Time Between Failure of 2nd ASM and Surgical Referral

Patients


đ

Number 40

Procedure Performed (>2 ASMs)

60

20



Procedure Performed (<2 ASMs)

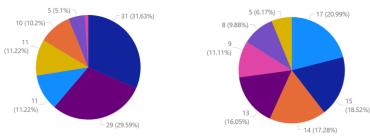



Figure 3: Children failing >2 ASMs more often underwent larger resections (i.e. hemispherectomy) compared to children failing <2ASMs.

Table: Patient characteristics of significance comparing patients failing  $\leq 2$  and >2 ASMs prior to referral for surgical evaluation

| Variables                   |                          |                          |                 |
|-----------------------------|--------------------------|--------------------------|-----------------|
|                             | <2 Failed ASMs<br>%, (n) | >2 Failed<br>ASMs %, (n) | Significance    |
| Type of 1st Seizure (n=397) | /0, (11)                 |                          |                 |
| Focal Onset                 | 89.5% (178)              | 81.3% (161)              | <i>p</i> =0.054 |
| Generalized Onset           | 6.5% (13)                | 15.7% (31)               |                 |
| Unknown Onset               | 3.5% (7)                 | 3% (6)                   |                 |
| Subclinical Onset           | 0.5% (1)                 |                          |                 |
| Frequency of Seizures       |                          |                          |                 |
| (n=397)                     | 20 70( (50)              | 45% (00)                 |                 |
| Daily                       | 29.7% (59)               | 45% (89)                 | <i>p</i> <0.001 |
| Weekly                      | 32.2% (64)               | 32.3% (64)               |                 |
| Monthly                     | 21.6% (43)               | 15.7% (31)               |                 |
| >Monthly                    | 16.6% (33)               | 7% (14)                  |                 |
| Etiology                    |                          |                          |                 |
| (n=410, >1 option allowed)  |                          |                          |                 |
| Structural Congenital       | 33.5% (68)               | 24.5% (51)               | <i>p</i> =0.053 |
| Structural Acquired         | 27.1% (55)               | 24.5% (51)               |                 |
| Genetic                     | 6.9% (14)                | 14.9% (31)               |                 |
| Infectious                  | 1.5% (3)                 | 1% (2)                   |                 |
| Inflammatory/Autoimmune     | 1% (2)                   | 3.8% (8)                 |                 |
| Metabolic                   | 0% (0)                   | 0.5% (1)                 |                 |
| Unknown                     | 28.5% (58)               | 28.8% (60)               |                 |
| Other                       | 1.5% (3)                 | 2% (4)                   |                 |
| Other Failed Treatments     |                          |                          |                 |
| (n=409, > 1 option allowed) |                          |                          |                 |
| None                        | 92.1% (187)              | 74.7% (154)              | <i>p</i> <0.001 |
| Dietary Therapy             | 4.4% (9)                 | 18% (37)                 |                 |
| Vagal Nerve Stimulator      | 2% (4)                   | 4.4% (9)                 |                 |
| Other                       | 1.5% (3)                 | 2.9% (6)                 |                 |

# CONCLUSIONS

- Failure of >2 ASMs prior to surgical referral is associated with younger age at seizure onset, longer duration to surgical evaluation, abnormal neurological exam, daily seizures, and failure of other non-ASM treatments
- · Abnormal neurological exam and seizure frequency do not predict outcome suggesting delay for surgical evaluation may be unnecessarv
- Children with >2 ASM trials are less likely to be rendered seizure free from surgery
- Almost half of the children with >2 ASM trials undergoing palliative surgery showed seizure reduction (Engel 1 or 2)
- · Recognizing characteristics leading to delayed surgical referral may shorten duration to surgery and improve outcomes

0-1 1-3 3-5 5-10 10+ Years Between Figure 2: Children failing >2 ASMs had a longer duration to surgical referral

> Procedure Neuromodulation Lobectomv Hemispherectomy Lesionectomy Callosotomy Other Thermal Ablasion

ASM Group

• 0-2

•3+